

# Light Makes a Surface Banana-Bond Split: Photodesorption of Molecular Hydrogen from RuO<sub>2</sub>(110)

Michael A. Henderson,\* Rentao Mu,<sup>†</sup> Arjun Dahal, Igor Lyubinetsky, Zdenek Dohnálek, Vassiliki-Alexandra Glezakou, and Roger Rousseau\*

Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

**Supporting Information** 

ABSTRACT: The coordination of H<sub>2</sub> to a metal center via polarization of its  $\sigma$  bond electron density, known as a Kubas complex, is the means by which H<sub>2</sub> chemisorbs at  $Ru^{4+}$  sites on the rutile  $RuO_2(110)$  surface. This distortion of electron density off an interatomic axis is often described as a 'banana-bond.' We show that the Ru-H<sub>2</sub> banana-bond can be destabilized and split using visible light. Photodesorption of  $H_2$  (or  $D_2$ ) is evident by mass spectrometry and scanning tunneling microscopy. From time-dependent density functional theory, the key optical excitation splitting the Ru-H<sub>2</sub> complex involves an interband transition in RuO2 which effectively diminishes its Lewis acidity, thereby weakening the Kubas complex. Such excitations are not expected to affect adsorbates on RuO<sub>2</sub> given its metallic properties. Therefore, this common thermal cocatalyst employed in photocatalysis is, itself, photoactive.

Model heterogeneous water splitting systems frequently incorporate supported cocatalyst functions specifically selected to promote redox reactions using charge carriers generated at light absorbing semiconductors.<sup>1,2</sup> Current understanding of the cooperative interactions between a photocatalyst and its supported cocatalyst is often limited to these narrowly defined roles. Yet just as semiconductor interfaces are not devoid of catalytic character, a cocatalyst should not be considered as photopassive. Here, we illustrate for the first time an inherent photochemical activity of RuO<sub>2</sub>, a typical oxide material employed as a supported thermal cocatalyst in water splitting<sup>3,4</sup> and O<sub>2</sub> photoreduction<sup>5</sup> studies. We show that photon absorption in a thin (110)-oriented film of this rutile oxide grown on Ru(0001) results in photodesorption of molecular hydrogen.

Ruthenium oxide is well-known for its ability to catalyze oxidation reactions<sup>6,7</sup> and has received some attention for its potential in reductive chemistry.<sup>8</sup> This oxide has a long history in the photocatalytic literature for promoting thermal redox reactions, but has not been considered as a viable light absorber. The model rutile  $\text{RuO}_2(110)$  surface has provided new fundamental insights into the role of  $\text{RuO}_2$  in catalysis.<sup>6</sup> For example, Wang et al.<sup>9</sup> demonstrated that molecular hydrogen binds to the  $\text{RuO}_2(110)$  surface at individual coordinatively unsaturated  $\text{Ru}^{4+}$  ( $\text{Ru}_{cus}$ ) sites, desorbing thermally at ~100 K. The adsorption structure<sup>10</sup> is believed

to be Kubas-like,  $^{11,12}$  in that the electron density of the H–H  $\sigma$ -bond is polarized toward the Ru<sub>cus</sub> site, as is seen in many dihydrogen metal complexes.  $^{13-15}$  The distorted electron density can be described as a banana-bond. Although the thermal dissociation for H<sub>2</sub> on RuO<sub>2</sub>(110) remains an open issue,  $^{9,10,16-20}$  we illustrate in this work a new property of RuO<sub>2</sub>, that of visible light activity splitting the Ru–H<sub>2</sub>  $\sigma$ -complex.

The adsorption/desorption properties of  $D_2$  on  $RuO_2(110)$ are examined using King and Wells sticking coefficient measurements<sup>21</sup> and temperature-programmed desorption (TPD).  $D_2$  adsorbs on  $RuO_2(110)$  at 40 K with an initial sticking probability of ~0.4 (see the Supporting Information (SI)), yielding a desorption feature at 118 K (Figure 1A) which shifts to lower temperature with increased coverage, eventually peaking at 100 K for saturation. The trailing edges of a family of traces overlay suggestive of first-order desorption with a degree of coverage dependence. The D<sub>2</sub> TPD peak profile exhibits an asymmetry at 111 K for coverages above ~0.5 ML, indicating a small change in the packing of D<sub>2</sub> molecules on the surface. Based on STM results (see below), the first layer saturation coverage of  $D_2$  on the surface at 5–80 K is ~0.75 ML, where 1 ML is designated as the  $Ru_{cus}$  site density on the ideal  $RuO_2(110)$  surface (5.06 × 10<sup>14</sup> cm<sup>-2</sup>). The only other  $D_2$ desorption feature detected is a broad, weak peak at ~260 K (see Figure 2). The coverage in this peak is  $\sim 3\%$  of the saturation value, consistent with low defect densities on a welldefined  $RuO_2(110)$  surface.

Aside from  $D_2$  desorption,  $D_2O$  and HDO are also detected in TPD (see the SI), the latter arising from scrambling on the walls of the mass spectrometer and from small amounts of background H<sub>2</sub>O adsorption. The surface chemistry responsible for water formation from hydrogen dissociation is detailed elsewhere<sup>16,19,22,23</sup> and therefore not a focus of this work. As shown in the SI, the upper limit on the amount of water generated from  $D_2$  dissociation is ~0.25 ML based on  $D_2O$ TPD.<sup>24,25</sup>

Using the inversion analysis approach,<sup>26</sup> Figure 1B displays the coverage-dependent binding energy  $(E_b)$  of D<sub>2</sub> on RuO<sub>2</sub>(110) obtained from the highest coverage TPD trace in Figure 1A. As expected, the  $E_b$  increases with decreasing coverage. Depending on selection of a prefactor, the  $E_b$  varies from 0.22 to 0.32 eV. In accord with the TPD assessment,

Received:
 May 17, 2016

 Published:
 July 8, 2016

11111111

0.02 0.04

0.08

0.08 0.26 0.41 0.59 0.75

80

D<sub>2</sub> TPD signal (x10<sup>-2</sup> ML/s)

4

2

0

60

0.35 <del>Г</del>(В)



0.30 E<sub>b</sub> (eV) TPD 0.25 0.20 0.6 0.2 0.4 0.8 D<sub>2</sub> coverage (ML) 0.6 1.4 (C) 1.3 0.5 Dipole E<sub>b</sub>(DFT-D2) (eV) 0.4 1.2 Ū 0.3 1.1 0.2 1.0 10 2 6 8 12 0 4 Number of H<sub>2</sub>

Figure 1. (A) D<sub>2</sub> TPD spectra (mass 4) from various coverages of D<sub>2</sub> on RuO<sub>2</sub>(110) at 40 K. (B) The binding energy  $(E_{\rm b})$  obtained using the inversion method (see text) from the highest coverage TPD trace shown in 'A'. (C) DFT evaluation of  $E_{\rm b}$  (red) for H<sub>2</sub> on RuO<sub>2</sub>(110) as a function of coverage. The induced dipole on the H<sub>2</sub> molecule,  $\mu$ , is plotted in blue.

DFT-D3 also shows that the ground-state  $E_b$  of H<sub>2</sub> at Ru<sub>cus</sub> sites is dependent on the coverage, ranging from 0.31 to 0.44 eV (Figure 1C). The only bound configuration of  $H_2$  at an  $Ru_{cus}$ site was the symmetric Kubas structure, though stable molecular and dissociative structures were found for adsorption at bridging O  $(O_b)$  sites, consistent with other theoretical studies.<sup>10,19</sup> Very little of the binding interaction at Ru<sub>cus</sub> sites can be attributed to van der Waals dispersion forces, as our DFT-D3 estimate of this component was <0.1 eV. This observation, along with the repulsive nature of  $H_2-H_2$ interactions on  $RuO_2(110)$ , can be understood in terms of a simple electrostatic model.

Analysis based on maximally localized Wannier functions indicates that chemisorption primarily occurs by donation of the electron pair in the H–H bonding orbital to the  $4d_{z^2}$  orbital of the strongly Lewis acidic Ru<sub>cus</sub> site,<sup>25</sup> leading to a threecentered  $(3c)-2e^{-}$  bonding interaction which is strongest at the low coverage extreme (1/12 ML), with the center of the Wannier function displaced by 0.15 Å off the bond center (as

illustrated in Figure 3). This displacement is attenuated by 15% at higher coverages, effectively reducing the magnitude of the induced dipole from 1.33 D (at 1/12 ML) to 1.15 D (at 1 ML) (see Figure 1C and Table SI1). The induced dipoles were calculated as follows: a 2e<sup>-</sup> point charge is assigned to the center of the Wannier function at each H-H distance for different coverages (1/12, 1/6, 1/4, 1/2, and 1 ML). The resulting attenuation is indicative of parallel dipole-dipole interactions, separated by 3.1 Å at saturation, causing a depolarization of the Ru-H<sub>2</sub> interaction and a commensurate decrease in  $E_{\rm b}$  (by ~20%). A dipole image is consequently induced at the surface, estimated in a similar fashion by Wannier centers localized in the RuO<sub>2</sub> slab.

As a complementary point of analysis, inspection of the projected electronic density of states (pDOS) indicates that the H-H  $\sigma$ -bonding orbital becomes stabilized (by 5 eV) and broadened (by 0.8 eV), characteristic of a strong interaction with the continuum of Ru 4d states. Taken together, these results suggest that there is a significant electrostatic component to the Ru-H<sub>2</sub> bonding interaction, where the H<sub>2</sub> in the bound state is polarized by the Ru<sup>4+</sup> center and also where the metallic nature of RuO<sub>2</sub> responds with a counter polarization within the oxide (as opposed to a well-defined sharp resonance associated with a localized bonding state).

Figure 2A presents TPD data illustrating the effect of visible light irradiation on  $D_2$  adsorbed on  $RuO_2(110)$ . For these data, an initial D<sub>2</sub> coverage of 0.70 ML is selected, and 460 nm light is employed. The data show that the 100 K TPD peak attenuates significantly with irradiation, and the broad 260 K feature is unchanged. Figure 2B shows the D<sub>2</sub> photonstimulated desorption (PSD) trace, the only photodesorption channel detected, for the  $4.4 \times 10^{19}$  photon/cm<sup>-2</sup> experiment shown in Figure 2A (the green trace). The near-exponential decay curve is consistent with first-order photodepletion of D<sub>2</sub> from the surface. The desorption event is distinctly nonthermal as the crystal temperature did not change and flux dependence shows the expected variation in rate. Coadsorption of a  $\sim 1:1$ mixture of H<sub>2</sub> and D<sub>2</sub> results in equivalent PSD contributions from these molecules without HD formation (see SI), indicating that photodesorption does not result from a recombinative process. The integrated PSD yield in Figure 2B corresponds to a coverage of  $\sim 0.39$  ML. The amounts of D<sub>2</sub> (Figure 2A) and water (see SI) in the subsequent TPD (i.e., after irradiation) decreased to 0.09 and 0.21 ML, respectively. This mass balance indicates an overall depletion of D<sub>2</sub> from surface as a result of light.

The ensemble-averaged TPD and PSD data are correlated in Figure 2C-E with atomic-scale observations using STM. The initial clean surface (Figure 2C) shows the expected bright and dark rows along the [001] direction of the RuO<sub>2</sub>(110) surface associated with O<sub>b</sub> and Ru<sub>cus</sub> sites, respectively.<sup>27</sup> After saturation of the surface with H<sub>2</sub> at 5 K (Figure 2D), the image consists of superimposed bright linear arrays of adsorbed species on the  $\mathrm{Ru}_{\mathrm{cus}}$  rows. Irradiation of this  $\mathrm{H}_2\text{-saturated}$ surface with broad band light (Hg arc lamp) results in depletion of H<sub>2</sub> molecules within the linear arrays, leaving behind a number of isolated species (Figure 2E). The overall  $H_2$ coverage decreases from 0.75 ML (saturation) to ~0.4 ML as a result of irradiation. These observations are consistent with the postirradiation TPD data that indicate depletion of  $H_2$  (or  $D_2$ ) from the surface.

As shown in Figure 3A, the  $Ru-H_2$  bonding interaction can be modeled by a Morse potential, in this case using an  $H_2$ 



**Figure 2.** (A) TPD of  $D_2$  (mass 4) after irradiation of 0.70 ML  $D_2$  on  $RuO_2(110)$  at 40 K with various exposures of 460 nm light. (B) The  $D_2$  PSD spectrum resulting from the 4.4 × 10<sup>19</sup> cm<sup>-2</sup> photon exposure in 'A'. (C–E) STM images of the clearn  $RuO_2(110)$  surface at 5 K before (C) and after (D) adsorption of 0.75 ML of  $H_2$  and then following broad band irradiation for 90 min (E).



Figure 3. Ground (GS) and excited (ES) states for  $H_2$  adsorption and photodesorption on  $RuO_2(110)$  (A) illustrate the electronic transition resulting in desorption (B). The inset in (A) shows the change in the spectral density of ESs between the adsorbed (positive) and desorbed (negative) configurations of the  $H_2/RuO_2$  system, computed by TD-DFT calculations on a cluster; see details in text and SI. (B) Configurations corresponding to GS and ES from (A) as well as the location of the Wannier centers (WC, dotted spheres) used to depict the charge localization and polarization. Color scheme: H (white), O (red), Ru (yellow). (C) Log plot of the initial  $D_2$  photodesorption rate from irradiation of 0.70 ML  $D_2$  on  $RuO_2(110)$  at 40 K with four wavelengths of light: 630 (1.97 eV), 520 (2.38 eV), 460 (2.70 eV), and 365 nm (3.40 eV). Dashed curve is to guide the eye.

coverage of 1/12 ML (with  $E_b = 0.44$  eV). The photodesorption process is addressed starting with this model of the ground state (GS) and consider two different approximations of the excited state (ES) electronic structure: (i) Using the charge constraint DFT formalism, we suppress the binding and polarization of the H<sub>2</sub> molecule by constraining the charge at the Ru<sub>cus</sub> site and O atoms directly bound to it to resemble that of the clean surface. At 1/12 ML coverage, this constraint leads to a strictly repulsive potential described by an exponential function (Figure 3A), such that the GS-to-ES energy difference is on the order of 2.1 eV. (ii) The most definitive of analyses, however, comes from time-dependent DFT (TD-DFT) calculations of the ES energy manifold between 0 and 3.5 eV above  $E_{\rm F}$ , as shown in the inset to Figure 3A (see SI). Using a cluster model where the local geometry, H<sub>2</sub>-binding energy, and charge state at the Ru<sub>cus</sub>-H<sub>2</sub> complex reproduce the surface slab calculations, we estimate the difference in the ES energy manifold with H<sub>2</sub> bound and unbound to the surface. H<sub>2</sub> adsorption induced a broad spectral change with a peak at ~2.5 eV, but only when H<sub>2</sub> was adsorbed. As experimental verification, Figure 3C shows that the D<sub>2</sub> PSD rate (i.e., photodepletion cross section) is greatest in the blue-green region of the visible spectrum (~2.5 eV). Taken together, we attribute the photoinduced desorption of  $H_2/D_2$  from  $RuO_2(110)$  to be the result of depolarization of the induced dipole interaction within the Kubas complex resulting from an optical transition in the  $RuO_2$  surface. This transition is most likely from O 2p derived states to unoccupied Ru 4d states based on the positions of p-to-d optically excited transitions in  $RuO_2$ .<sup>28–30</sup> Similar optical processes may occur on other late transition-metal oxides.<sup>31</sup>

The majority of photochemical events occurring at heterogeneous interfaces result from charge-transfer processes, i.e., the transfer of an electron between an interfacial state and an adsorbate resulting in bond-forming and/or bond-breaking events. Our findings suggest that H<sub>2</sub> photodesorption arises from a charge redistribution in the surface that weakens the electrostatics responsible for polarization of the H–H  $\sigma$  bond. Delving into time scales for these events-the initial electronic excitation, the stabilization of the charge redistribution state, the depolarization of the  $3c-2e^{-}$  bond, and the subsequent H<sub>2</sub> desorption-should provide important details into the efficiency of this process. It is clear from the measured cross sections (Figure 3C) that the desorption rates are comparable to those of typical photochemical processes occurring on idealized semiconducting oxides such as TiO2.32 Given our model for photochemically splitting the Ru<sub>cus</sub>-H<sub>2</sub> bond, the key step in the chain of events above is likely the redistribution of charge in the  $RuO_2(110)$  surface. This must be relatively long-lived in order for the depolarization process to desorb H<sub>2</sub> at the temperatures employed in this study (5-40 K). Otherwise, one would expect that rapid screening and deexcitation of the ES (both phenomena prevalent in metals) should significantly moderate any influence of the redistribution process on the polarization of the Ru<sub>cus</sub>-H<sub>2</sub> complex. This, in itself, suggests that the  $RuO_2(110)$  surfaces possess a degree of semiconductor-like character in its electronic structure despite the bulk being metallic. Therefore, the nonthermal properties of this cocatalyst should not be overlooked in obtaining a full understanding of its role in heterogeneous photocatalytic energy conversions.

# ASSOCIATED CONTENT

#### **Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b05083.

Experimental and theoretical methods and data (PDF)

# AUTHOR INFORMATION

## **Corresponding Authors**

\*ma.henderson@pnnl.gov

\*roger.rousseau@pnnl.gov

### **Present Address**

<sup>T</sup>Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

#### Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and performed in EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle.

## REFERENCES

(1) Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655.

(2) Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286.

(3) Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. *Nature* **2006**, *440*, 295.

(4) Sato, J.; Saito, N.; Yamada, Y.; Maeda, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K.; Inoue, Y. *J. Am. Chem. Soc.* **2005**, *127*, 4150.

(5) Maeda, K.; Teramura, K.; Masuda, H.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. J. Phys. Chem. B **2006**, 110, 13107.

(6) Over, H. Chem. Rev. 2012, 112, 3356.

(7) Weaver, J. F. Chem. Rev. 2013, 113, 4164.

(8) Qu, J. P.; Zhang, X. G.; Wang, Y. G.; Xie, C. X. Electrochim. Acta 2005, 50, 3576.

(9) Wang, J. H.; Fan, C. Y.; Sun, Q.; Reuter, K.; Jacobi, K.; Scheffler, M.; Ertl, G. Angew. Chem., Int. Ed. 2003, 42, 2151.

(10) Sun, Q.; Reuter, K.; Scheffler, M. Phys. Rev. B 2004, 70, 235402.
(11) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120.

(12) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. **1984**, 106, 451.

- (13) Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1993, 32, 789.
- (14) Heinekey, D. M.; Oldham, W. J. Chem. Rev. 1993, 93, 913.
- (15) Kubas, G. J. Chem. Rev. 2007, 107, 4152.

(16) Jacobi, K.; Wang, Y.; Ertl, G. J. Phys. Chem. B 2006, 110, 6115.

(17) Crihan, D.; Knapp, M.; Seitsonen, A. P.; Over, H. J. Phys. Chem. B 2006, 110, 22947.

(18) Knapp, M.; Crihan, D.; Seitsonen, A. P.; Lundgren, E.; Resta, A.; Andersen, J. N.; Over, H. J. Phys. Chem. C **2007**, 111, 5363.

(19) Wei, Y. Y.; Martinez, U.; Lammich, L.; Besenbacher, F.; Wendt, S. Surf. Sci. 2014, 619, L1.

(20) Jacobi, K.; Wang, Y.; Ertl, G. J. Phys. Chem. B 2006, 110, 22948.

(21) King, D. A.; Wells, M. G. Surf. Sci. 1972, 29, 454.

(22) Knapp, M.; Crihan, D.; Seitsonen, A. P.; Resta, A.; Lundgren, E.; Andersen, J. N.; Schmid, M.; Varga, P.; Over, H. J. Phys. Chem. B 2006, 110, 14007.

(23) Wei, Y. Y.; Martinez, U.; Lammich, L.; Besenbacher, F.; Wendt, S. J. Phys. Chem. C 2014, 118, 27989.

(24) Mu, R. T.; Cantu, D. C.; Glezakou, V. A.; Lyubinetsky, I.; Rousseau, R.; Dohnálek, Z. J. Phys. Chem. C 2015, 119, 23552.

(25) Mu, R. T.; Cantu, D. C.; Lin, X.; Glezakou, V. A.; Wang, Z. T.; Lyubinetsky, I.; Rousseau, R.; Dohnálek, Z. J. Phys. Chem. Lett. 2014, 5, 3445.

(26) Tait, S. L.; Dohnálek, Z.; Campbell, C. T.; Kay, B. D. J. Chem. Phys. 2005, 122, 164707.

(27) Over, H.; Seitsonen, A. P.; Lundgren, E.; Schmid, M.; Varga, P. Surf. Sci. 2002, 515, 143.

(28) Yang, Z. J.; Guo, Y. D.; Li, J.; Liu, J. C.; Dai, W.; Cheng, X. L.; Yang, X. D. *Chin. Phys. B* **2010**, *19*, 077102.

(29) de Almeida, J. S.; Ahuja, R. Phys. Rev. B 2006, 73, 165102.

(30) Goel, A. K.; Skorinko, G.; Pollak, F. H. Phys. Rev. B 1981, 24, 7342.

(31) Hakanoglu, C.; Hawkins, J. M.; Asthagiri, A.; Weaver, J. F. J. Phys. Chem. C 2010, 114, 11485.

(32) Henderson, M. A. Surf. Sci. Rep. 2011, 66, 185.